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Delaunay simplices in liquid and amorphous rubidium 

N N Medvedev 
Institute of Chemical Kinetics and Combustion, Siberian Branch of the USSR Academy of 
Sciences, Novosibirsk 630090, USSR 

Received 25 July 1989, in final form 9 April 1990 

Abstract. Simplicial atomic configurations (four nearest atoms, defining the Delaunay 
simplices) are considered for molecular-dynamic models of liquid and quenched rubidium. 
The aggregates, involving simplicial configurations of a tetrahedral and quartoctahedral 
form, are studied. The problem is reduced by the general Voronoi-Delaunay approach to 
the study of clusters of the coloured sites on the Voronoi network in terms of percolation 
theory. The results of a detailed analysis of finite clusters, depending on the fraction of 
coloured sites for different colours, are proposed. The simplicial atomicconfigurations, close 
in shape to regular tetrahedra, determine the T-coloured sites on the Voronoi network and 
those close in shape to regular quartoctahedra determine the 0-coloured ones. Small, 
medium and large clusters and the backbones of finite ones are studied for this model. The 
percolation thresholds are determined for the T and 0 colouring. A topological similarity 
between the aggregates of tetrahedral simplices in liquid and quenched states is revealed. 
The significant role of the quartoctahedral simplicial configurations in the quenched state 
structure is emphasized. 

1. Introduction 

The problem of structure has two aspects. First, it is a problem of the local order. It is 
necessary to determine the characteristic structural elements that will be the basic 
structural blocks of the system. These structural ‘tiles’ may be represented by atomic 
configurations which are typical of the given class of systems, composed of a few atoms. 
Second, one should be able to describe the rules of the spatial distribution of these 
structural elements. Up to now the former problem has been the focus of attention 
because a system without translational symmetry assumes the presence of local order 
only, and the absence of long-range order. However, it is clear that both amorphous 
and liquid phases are indicative of a certain extended structural order. Thus, studying 
the pair distribution function of the interstitial cavity of tetrahedral atomic configurations 
in disordered packing of hard and soft balls, Finney and Wallace (1981) showed them 
to form linear clusters with branchings. We have investigated the mutual arrangement 
of tetrahedral and quartoctahedral atomic configurations in Lennard-Jones models 
(Medvedev et all988). Tetrahedral configurations were observed (see figures therein) 
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to contact by the faces to form branched chains and five-membered rings. The quart- 
octahedra (one fourth of a perfect octahedron) sometimes join into octahedra but more 
often form aggregates with quartoctahedra belonging to different octahedra. Thus, the 
models of dense disordered systems of spherical atoms have definite statistical motives 
in the arrangement of these structural elements. Unlike crystals, in which the structural 
motives are described in terms of the translational order, in this case the methods need 
to be different from those in crystallography. We think the methods and terminology of 
percolation theory to be most helpful here. 

Percolation theory in its simplest classical variant deals with networks, containing 
some randomly coloured sites (the problem of site percolation). Small or large clusters 
of a stochastic nature appear due to the fraction of coloured sites. For a fraction larger 
than or equal top, there exists an infinite cluster, connecting the opposite network sides. 
Earlier (Medvedev et al1988) we have shown how to formulate the problem of disordered 
atomic system structure in terms of percolation theory. Our approach is based on the 
mathematical theorems by Voronoi and Delaunay on covering the space for a system of 
discrete centres (Voronoi 1908, Delaunay 1947). 

Thus, Voronoi networks have been used in structural studies. The sites of these 
networks are the vertices of the Voronoi polyhedra constructed around the atoms. The 
bonds are formed by their edges. The Voronoi polyhedron (VP) for a given atom in the 
system of atoms is known to be a convex polyhedron, binding the volume of space whose 
points are closer to the centre of this atom than to that of the others. In our models the 
Voronoi networks are four-coordinated (each site has four bonds) because the models 
of disordered phases (liquid or quenched) are ‘non-degenerating’ (only four VPS meet 
at each vertex (Delaunay 1947)). It is important that each site of the Voronoi network 
is the circumcentre of its Delaunay simplex whose vertices are formed by four atoms for 
which the Voronoi polyhedra meet at a given site of the Voronoi network. These four 
atoms are called the simplicial configurations. Another peculiarity of the Voronoi 
network is that two contiguous network sites (connected by a bond) correspond to 
the face-contiguous Delaunay simplices or, in other words, to two simplicial atomic 
configurations with three atoms in common. Thus the Voronoi network topology unam- 
biguously reflects the mutual arrangement of the simplicial atomic configurations in the 
model. 

In disordered phases the Delaunay simplices are commonly represented by a broad 
distribution of distorted tetrahedra. However, one can readily choose some classes of 
simplices with a definite structural meaning from a set of simplices of a given model. 
For instance, the Delaunay simplices with the largest circumradii are the local discharges 
in the structure, and those with small ones are the most dense local configurations 
(Delaunay 1947). The simplices may also be classified by their shape. The models of 
dense disordered systems of spherical atoms have two classes of Delaunay simplices 
which are close in shape to regular tetrahedra and regular quartoctahedra, respectively 
(Medvedev and Naberukhin 1987a). 

Thus, the simplicial configurations with the structural properties of interest to us can 
be taken as a structural element. In this paper we restrict ourselves to tetrahedral 
and quartoctahedral simplices. We then use the Voronoi network on which the sites 
corresponding to the chosen simplicial configurations are coloured. Thereupon the 
clusters of the coloured sites are analysed in terms of percolation theory. In section 2 we 
discuss the rubidium models used in this paper. Section 3 reports the measurements for 
the tetrahedral and quartoctahedral simplices. Sections 4 and 5 contain the results of the 
analysis of finite clusters of coloured sites on the Voronoi network of the rubidium 
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models. In conclusion (section 6) the structural meaning of the results obtained is 
discussed. 

2. Models 

Two molecular-dynamic models, composed of 864 atoms, have been studied for liquid 
and quenched rubidium (Tanaka 1982). A liquid model (denoted below by (1)) cor- 
responds to a temperature t, = 315 K,  that is slightly higher than the melting point. The 
self-diffusion coefficient determined from the mean square atomic displacement D, = 
3.8 x cm2 s-l .  The model of a quenched state has been created by cooling the liquid 
at constant density with a rate of about l O I 3  K s-'. For details see Tanaka (1982). For a 
quenched state (model (q)) t, = 4.5 K. The self-diffusion coefficient D, is very small 
and determined with a large relative error. Tanaka gives the upper estimate for 
D, S 0.06 X cm2 s-'). Model (1) is a typical liquid, demonstrating the usual liquid- 
like radial distribution function. Model (9) corresponds to a solid (or highly viscous) 
phase. The second maximum of the radial distribution function is split into two sharp 
sub-peaks (Tanaka 1983) which allows it to be regarded either as a quenched or amorph- 
ous phase. 

For each model the Voronoi and Delaunay tessellations have been constructed by 
taking into account the periodic boundary conditions. The numbers of sites N o  on the 
Voronoi network inside the model box are 5381 for (1) and 5187 for (9) models. 

Although only one instantaneous realization has been used for each thermodynamic 
state, we are sure of the authenticity of all the qualitative results obtained below. The 
Tanaka models are fairly large and the main structural features are reliably displayed 
already in one instantaneous realization (Tanaka 1986). We have performed a usual 
Voronoi polyhedra analysis of these models, and found that the result for the given 
individual configurations is very close to that obtained by Tanaka (1986) where he has 
employed a set of configurations for each thermodynamic state. 

3. Statistics of the Delaunay simplices 

The measure T (tetrahedricity) proposed by (Medvedev and Naberukhin 1987a, b) is 
used to determine the simplices close in shape to a regular tetrahedron: 

T = ( I I  - I,)2/1572. 
( > I  

Here I ,  is the length of the ith edge; l i s  the average edge length for this simplex. With 
T = 0 the simplex is a regular tetrahedron. For a weakly distorted tetrahedron Tis small, 
and vice versa, if the simplex has small Ti t  is close in shape to a regular one. Another 
measure 0 (octahedricity) is required to determine the quartoctahedral simplices (Med- 
vedev and Naberukhin 1987a, b): 

0 = ( I I  - I])*/lOP + c. ( I ,  - I m / f i ) 2 / 5 T 2  
l > l  I 

i , l#m 

where I,,, is this simplex edge with the maximum length. A regular quartoctahedron (one 
fourth of a perfect octahedron) has one edge d? times as long as the other five, which 
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Figure 1. Histograms of the distribution of the Delaunay simplices by measure T (tetrahed- 
ricity, left) and 0 (octahedricity, right) for liquid (I)  and quenched (q) rubidium. Hatched 
areas show ‘good’tetrahedral ( T  S 0.016) and ‘good’ quartoctahedral (0 S 0.024) simplices 
(see text). 

are equal. Hence, 0 = 0, and only the simplices close in form to regular quartoctahedra 
have small values of 0. 

Note that one measure, e.g. tetrahedricity, is insufficient for our aims. For a regular 
quartoctahedron T = 0.057. This value, however, may belong to other distorted sim- 
plices of non-quartoctahedral form as well. Unambiguous correspondence between the 
simplex shape and measure value holds for the low measure values only (Medvedev and 
Naberukhin 1987b). 

Figure 1 gives the T- and 0-distributions of the Delaunay simplices for our rubidium 
models. These distributions are similar to those of the Lennard-Jones liquid and 
quenched models (Voloshin et a1 1989). The liquid demonstrates the unimodal T- and 
0-distribution (figure l(1)). The quenched state gives the maxima at the low measure 
values thus testifying the tetrahedral (figure l(q) left) and quartoctahedral (figure l(q) 
right) simplices to be a distinct type. The broken lines in figure 1 denote the boundary 
values Tb = 0.016 and Ob = 0.024 used to separate arbitrarily ‘good’ tetrahedra and 
quartoctahedra from the ‘strongly distorted’ ones. These boundary conditions were 
obtained by analysing the Lennard-Jones models of an FCC crystal near the melting 
temperature (Medvedev et a1 1987). They separate the maxima, corresponding to the 
tetrahedral or quartoctahedral configurations, preserved in the crystal at a given tem- 
perature on the T- and 0-distributions of the crystal. Note that the liquid phase has a 
noticeable fraction of good tetrahedra and quartoctahedra (figure 1(1), hatched) which, 
however, does not represent a distinct type. 

In order to study clusters of the simplices of a given shape we use Voronoi networks, 
colouring all the network sites whose measured values are smaller than a certain chosen 
limit. This limiting value defines the fraction of coloured sites which is the integral of the 
distribution from zero to a given limiting value (figure 1). The fraction of coloured sites 
is a parameter which is highly important in percolation theory. 

The curves in figure 2 show the correspondence between the fraction of coloured 
sites and the limiting measure value. The horizontal broken lines denote the boundary 
values T b  and o b .  The vertical intercepts indicate the fraction of coloured sites on the 
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Figure 2. The values of measure T and 0 against 
the fraction of simplices P, with the measure value 
less than a given T (or 0). Curves Tq and 0, 
for tetrahedricity and octahedricity in model (9). 
Curves T,  and OL are for those in model (I) .  Hori- 
zontal broken lines denote the boundary values of 
measure T,, = 0.016 and Ob = 0.024 (see caption 
to figure 1). Vertical broken lines point to the 
corresponding fractions of coloured simplices. 
Arrowson axisPshow the thresholdvaluesfor the 
corresponding colouring and models (see table 1). 

1 10 

i 
1 

0.1 0.2 0.3 0 .4  

Figure 3. The dependence of the average number 
of sites in the finite clusters on the fraction of 
coloured sites P. Curve RAND for the random 
colouring averaged over the networks of models 
(1) and (9). Arrow RAND on P axis indicates the 
percolation threshold for the random colouring. 
See also the caption to figure 2. A, Tcolouring in 
model (q); A ,  T colouring in model ( I ) ;  0,  0 
colouring in model (9); 0, 0 colouring in model 
(1). 

network, corresponding to these limiting values of tetrahedricity and octahedricity . 
Note that in the liquid phase for both colours (curves 0, and TI) the ‘good’ simplicial 
configurations comprise a fraction which is substantially lower than the percolation 
threshold. For the quenched state for 0-colour the same situation is valid. Only the 
curve Tq shows that the number of ‘good’ tetrahedral simplices is sufficient to form a 
percolating cluster. Hence, one should remember that with an equal fraction P of 
the coloured sites, the simplices demonstrate the different quality of the form in the 
quenched and liquid phases. 

4. Finite clusters 

Figure 3 depicts the dependence of the average number of sites in finite clusters as a 
function of the fraction of coloured sites. In terms of percolation theory this characteristic 
is C,sN,/C,N,, where N, is the number of clusters, containing s sites; the summation is 
carried out overalls values, beginning with unity. To simplify the figure, the curves have 
been constructed with fractions P not exceeding the threshold values P,. When the 
percolating cluster appears, the average number of sites in the finite clusters decreases 
drastically with increasing P. First, we pay attention to a noticeable difference of the 
curves for both colours from the RAND one, corresponding to a random colouring. The 
RAND colouring was performed in the usual way. Each site, irrespective of the others, 
was considered as coloured with probability P ( P  being the fraction of coloured sites), 
i.e. here the coloured sites are non-correlated. In this case the curves of the average 
number of sites in the finite clusters practically coincide for the Voronoi networks of the 
(1) and (9) models; the percolation thresholds are reached at almost the same values, 
P = 0.46. The difference of curves TI, T,, O,, 0, from the RAND one as well as from the 
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Table 1. The threshold fractions of coloured sites on the Voronoi network for the model of 
liquid (I)  and quenched (4) rubidium. P I  for T-colouring, P p -  for 0-colouring, Pm'niJ, O )  for 
mixed colouring (see text). For random colouring P, for the (I) and (9) models are approxi- 
mately the same and equal to 0.46 -t- 0.03. 

P I  0.305 0.324 
PP 0.407 0.446 
p?n'T.o' 0.352 0.279 

, ~~ 

0 1  0 2  0 3  0 4  0 1  0 2  03 0 4  
P 

Figure 4. The probability of a given site to be 
isolated coloured. Straight line p = P depicts the 
probability that a given site is the coloured one. 

Figure 5.  The probability that a given site belongs 
to a small cluster (consisting of two or three 
coloured sites). 

percolation thresholds (see table 1) indicates that the T- and 0-coloured sites appear on 
the Voronoi network not by chance, i.e. there is a correlation in the arrangement of the 
quartoctahedral and especially tetrahedral simplices. Of interest is that in the liquid and 
quenched states the curves for the T-coloured clusters (T, and T,) actually coincide, 
which does not hold for the 0-coloured ones. However, the average number of sites in 
the cluster is a highly averaged characteristic. Below we analyse the finite clusters in 
more detail. 

Figure 4 points to the probability that a given site is an isolated coloured site. This 
value is determined as N1/No ,  where N I  is the number of isolated coloured sites, and N o  
is the total number of network sites (see section 2). Here, as in figure 3, the RAND curve 
is very different from the T- and 0-ones. The largest difference is observed for the T- 
colour, where the isolated sites are hardly probable. Note also that in this case the curves 
for the (1) and (4) models coincide. As in figure 3 the 0-colouring for liquid is closer to 
the RAND one. The straight line p = P depicts the probability that a given site is coloured 
(it is either isolated or belongs to any cluster). At  small Pour  curves meet at this straight 
line thus testifying that only the isolated coloured sites are feasible in this case. Passing 
over the threshold fraction P,, this characteristic has no jump. 

Figure 5 demonstrates the probability that a given site belongs to a small cluster 
(involving two or three sites: & = 2 , 3 ~ N s / N o ) .  Figure 6 depicts the probability that a given 
site belongs to a medium cluster (containing four, five or six sites: 2s=4.5,6sNs/No). All 
the curves for small and medium clusters differ from each other and from the curves of 
the isolated sites. A common feature is the difference of the T- and 0-curves from the 
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0.10 

0.05 

0 .a 

RAND 

0.2 0.3 0 4  
P 

0 1  

Figure 6. The probability that a given site belongs 
to a medium cluster (consisting of four, five or six 
coloured sites). 

0 1  0 2  0 3  0 4  

Figure 7. The probability that a given site belongs 
to a large cluster (consisting of seven or more 
coloured sites). 

RAND ones, and an agreement between the results for liquid and quenched states for T- 
colouring. It is noteworthy that at a small fraction of coloured sites the quartoctahedra 
have the highest ability to form small and medium clusters (curves 0,). Finally, figure 7 
shows the probability that a given site belongs to a large finite cluster, consisting of seven 
or more coloured sites (C,, ,sN,/N,).  The above properties are valid for this case as 
well. In addition, the tetrahedral simplices are observed to have a greater tendency to 
form large clusters (curves TI and T,) than in the case of the randomly coloured sites 
(curve RAND) and 0-colouring. The curve 0, has a shoulder, which starts at about P = 
0.14, just at the point where the maximum is observed for the medium clusters (figure 
6). This means that an increase in the fraction of 0-coloured sites makes the medium 
clusters join with the large ones. 

5. Backbones of finite clusters 

The backbone (the residue left after the removal of all dead ends) is an important feature 
of a cluster. It is a ring or a number of rings joined by common sites or bonds. 

Analysis of the models used shows that in the clusters of the T- and 0-coloured sites 
neither liquid nor quenched states contain the backbones, representing the rings of three 
sites. A small fraction of such backbones is observed at random colouring only. 

Another situation is true for the four-site rings. Figure 8 depicts the curves for the 
probability that a given site belongs to a four-membered ring. This value was calculated 
to be 4 N $ / N o  where N f  is the number of backbones of four sites. These backbones are 
most probable in the 0-coloured clusters. Moreover, in the quenched state their number 
is three times as large as in the liquid one (curves 0, and 0,). A four-membered ring, 
consisting of good quartoctahedra, is a good octahedral atomic configuration. There are 
only traces of T-coloured four-membered rings in the liquid (curve TI ) ,  which are 
completely absent in the (9) model. The curve RAND demonstrates the four-membered 
rings on the Voronoi network, revealed by random colouring of the sites. 

It is not so for the backbones consisting of the rings with five sites ( 5 N $ / N , ) .  The 
quenched phase contains the majority of such rings (curve T, (figure 9)). Five good 
tetrahedra are readily packed in a ring to form a decahedron. The five-membered 
rings are not typical of the 0-coloured clusters. These cannot be constructed by good 
tetrahedra, otherwise they must be strongly distorted. Therefore such backbones are 
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Figure 8. The probability that a given site belongs 
to a four-membered ring in the backbone of the 
finite clusters. 

0 3  0 4  
O 2  P 

0 1  

Figure9. The probability that a given site belongs 
to a five-membered ring in the backbone of the 
finite clusters. 
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1 
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0 IO? 
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O 2  P 

0 1  
0 @I;.. i 

Figure 10.Theprobabilitythat agiven site belongs 
to the backbone of a finite cluster, consisting of 
seven or  more sites. 

I 

0 1  0 2  0 3  0 4  

Figure 11.Thedependenceofthe averagenumber 
of sites in the backbone of the finite clusters on 
the fraction of coloured sites. At the upper left 
are the schemes of the simplest backbones at T- 
colouring. At the bottom right are those for 0- 
colouring. 

observable in liquids and are practically absent in quenched states. Rings consisting of 
six sites are quite rare in both types of clusters but there are backbones with a great 
number of sites. 

Figure 10 contains the probabilities that a given site belongs to a ring with seven and 
more sites (ZS3&’S/NO) where NF is the number of backbones withs sites. The curves 
for T colourings rise faster than the others. This implies that the T-clusters are much 
more cross-linked than the rest. With random colouring these backbones appear only 
near the percolation threshold, thus illustrating the statistical ‘interlacing’ of clusters 
with increasing number of coloured sites. Note that the curves Tq and T, in this case are 
very close, which indicates the similarity between the T-clusters of liquid and quenched 
phases. 

Figure 11 presents the dependence of the average number of sites in the backbones 
of the finite clusters X s a 3 s N S / X s 3 3 N $  on the fraction of coloured sites. The curves are 
very different from those in figure 3, with an average size of whole clusters. The minimum 
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number of sites in the backbone is three. The mean size of the backbones for random 
colouring begins with this value (curve RAND). For 0-colour the minimal backbones 
consist of four sites (curves 0, and 0 , )  and for the T-colour they consist of five sites, 
their size rapidly increasing (curves Tq and TI) .  The three simplest backbones observed 
for the T-coloured clusters in our model are given at the upper left of the figure. Their 
sizes are five, eight and ten, respectively. The non-monotonic nature of the T, and TI 
curves seems to be due to the appearance of these discrete backbones rather than poor 
statistics of our data. The two simplest backbones (four and eight sites) in the 0-coloured 
clusters present in our model are depicted at the bottom right. Thus, analysis of the 
backbones of finite clusters testifies the clusters of tetrahedral configurations to contain 
the five-membered rings (decahedron atomic aggregate) and those of quartoctahedral 
ones the four-membered rings (octahedra). 

6. Conclusion 

In this paper we have studied the properties of clusters consisting of the coloured sites 
on the Voronoi network of liquid and amorphous rubidium. Each site of this network 
corresponds to a simplicial atomic configuration. Therefore each cluster, composed of 
coloured sites, depicts an aggregate of atoms consisting of the simplicial configurations 
of a given type. In other words, the network clusters demonstrate the arrangement of 
the corresponding atomic aggregates. In the general case our clusters are the ‘animals’. 
This variety of structural realizations is a property of disordered phases. Therefore we 
think that the structure must be studied by searching for the statistical laws of the 
mutual arrangement of the given structural elements and not only by searching for and 
enumerating some separate aggregate types. 

It is quite suddenly that the T-clusters have the same topology at any fraction of 
coloured sites P for both liquid and quenched rubidium. The average cluster sizes are 
equal as are the probabilities for small, medium and large clusters. The same can be said 
about their backbones. This may be attributed to the fact that the aggregates of most 
tetrahedral configurations in the liquid are not basically reconstructed on removal of 
temperature perturbations (glass formation). Although the simplices in the liquid are 
strongly distorted, the T-coloured clusters correspond to the aggregates of most tetra- 
hedral, i.e. most locally dense and energy profitable, simplicial configurations compared 
to the others in this liquid. With decreasing temperature the atoms of perturbed tetra- 
hedral configurations may easily pass by small shifts to the deep local energy minima, 
corresponding to good tetrahedral configurations. The connectivity of these clusters 
may practically be the same. 

For 0-colouring the clusters in the quenched and liquid phases are different. In the 
liquid phase these are mostly close to that observed for random colouring, i.e. the 
correlations between quartoctahedra in this case are the least and the threshold fraction 
P, = 0.407 which is substantially higher than for T-colouring and closer to the value of 
random colouring. Indeed, the quartoctahedral configurations are stable only at a 
spatial arrangement of the neighbouring atoms (e.g. being parts of the octahedral 
configuration), In liquids the temperature perturbations hamper the appearance of 
any special low-density octahedron-like configurations. Therefore the appearance of 
quartoctahedra in the liquid is rather random. In the quenched state the situation is 
quite different. The quartoctahedral simplices readily join in clusters to form many 
octahedral configurations. Although the correlation between the quartoctahedra is high, 
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the threshold fraction value is large (Pc = 0.446) because the quartoctahedra in the 
quenched state tend to be located in closed clusters, which hampers the appearance of 
the percolating cluster. 

We believe a large fraction of good quartoctahedral configurations to be a result of 
a large number of good tetrahedral ones. This is likely to be a general fact. If the T- 
distribution has a peak at small values, the same system displays the peak of good 
quartoctahedra on the 0-distribution. On the contrary, if there is no peak of good 
tetrahedra, the peak of good quartoctahedra is also absent (Medvedev and Naberykhin 
1987a, Voloshin eta1 1989, Medvedev eta1 1987). The reason is that the tetrahedron and 
octahedron are mutually complementary figures. Alternating these, one can readily 
cover the space. The most dense crystalline packings (FCC, HCP) are constructed on this 
principle. In the disordered dense packings the octahedra, half-octahedra and even 
separate quartoctahedra may find the natural places between the clusters of tetrahedral 
configurations. 

Thus, if the most dense tetrahedral configurations are an attribute to the dense 
packings of spherical atoms, the quartoctahedral ones are their results. The fact that the 
clusters of good tetrahedra are 'linked' by quartoctahedra is confirmed with the help of 
a new colour, determined as min(T, 0 ) .  Now we are colouring the Voronoi network 
site that has the lowest measured value T or 0 ,  i.e. the most regular tetrahedral or 
quartoctahedral simplices are chosen. For liquid the threshold fraction, PFn(',') has an 
intermediate value between P I  and P c ,  see table 1. For the quenched state, however, 
Prln(T,o) = 0.279, which is substantially less than the threshold values for the T- and 0- 
colourings. A low Prin(*.') indicates that the good quartoctahedral simplices join the 
finite T-clusters to form the percolating min( T ,  0)-colour clusters. For the liquid phase 
the simplex quality is worse; neither bad nor good quartoctahedra must be packed 
between bad tetrahedra. Therefore a new colouring fails to reveal any correlation 
between the T- and 0-simplices in the liquid. 
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